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We prove ergodicity of the finite dimensional approximations of the three
dimensional Navier–Stokes equations, driven by a random force. The forcing
noise acts only on a few modes and some algebraic conditions on the forced
modes are found that imply the ergodicity. The convergence rate to the unique
invariant measure is shown to be exponential.
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1. INTRODUCTION

The uniqueness of statistical steady states for the Navier–Stokes equations
is an important problem in the mathematical theory of turbulence. The
question is completely open in dimension three, due to the lack of unique-
ness of the equations. In fact, there is no way yet to give meaning to the
mathematical objects involved in the subject.

In the present paper the property of ergodicity is proved for the finite
dimensional approximations of the three-dimensional Navier–Stokes equa-
tions, driven by a random force. The same problem has been solved in two
dimensions by E and Mattingly. (3)

Such a result can have a qualitative interest for the statistical behav-
iour of an incompressible fluid. Indeed, if the Kolmogorov theory of tur-
bulence is taken into account, one can believe that the cascade of energy,
responsible of the transport of the energy through the scales, is effective in



the inertial range. At smaller scales, only the dissipation ends up to be
relevant. Hence the long-time statistical properties of the fluid can be suf-
ficiently depicted by the low modes of the velocity field. In some sense, if
the ultraviolet cut-off is sufficiently large, in order to capture all the
important modes, the corresponding invariant measure gives the real
behaviour of the fluid. In view of these considerations, the conclusions of
the paper can give both a hint and a possible starting point for the analysis
of the infinite dimensional case (the corresponding analysis, in the deter-
ministic setting, turns out to be true, see, for example, Constantin, Foias,
and Temam (1)).

We consider a finite dimensional truncation of the three dimensional
Navier–Stokes equations, driven by a random force, with periodic bound-
ary conditions. The method of the proof of ergodicity is classical and it
consists of two steps. First we prove that the transition probability densities
are regular, by checking that the diffusion operator is hypoelliptic (the
Hörmander condition). Then we show that the Markov process is irreduc-
ible, in the sense that each open set is visited with positive probability at
each time. To this end, we study the associated control problem (see
Section 6) with the help of geometric control theory.

A general result of Jurdjevic and Kupka (10) for polynomial control
systems with leading terms of odd degree says that hypoellipticity is equiv-
alent to controllability. The claim is not true in general, when dealing with
polynomials of even degree, like the one considered here. Roughly speak-
ing, the positive terms of a even degree polynomial non-linearity impose on
the process some privileged direction to be followed, and consequently
some unavailable directions. The main point in this paper is that the geo-
metrical properties of the Navier–Stokes non-linearity can be used to show
that the obstructions induced by the positive terms do not prevent the
process from visiting any open set of the whole state space with positive
probability.

The controllability property ensures in particular that the invariant
measure is supported on the whole state space. Notice that irreducibility
for the infinite dimensional equations was originally proved by Flandoli, (5)

but under the assumption that the noise acts on all modes.
Both these properties, strong Feller and irreducibility, are implied by

an algebraic condition on the set of indices corresponding to the modes
forced by the noise. The condition essentially means that it is possible to
obtain any index as a sum of some of the forced indices. One can see this
mechanism as a geometrical realisation of the cascade of energy, since the
non-linear term transmits the random forcing from the few forced modes to
all the other modes. As an example we show that the algebraic condition is
satisfied if the three lowest modes are forced.
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Recently, many authors have applied the techniques we have used
here, such us the hypoellipticity for degenerate diffusions, or the general
theory for Markov chains and Markov processes collected and developed
by Meyn and Tweedie (see, e.g., their book (11)). Among many others we
quote the papers by E and Mattingly, (3) Eckmann and Hairer, (4) Hairer, (7)

Rey-Bellet and Thomas, (14) and some of the references therein.
The paper is organised as follows. In the first section the main defini-

tions are given, together with the statements of the main results and an
outline of their proofs. The technical computations and the precise state-
ment of some hypotheses are postponed in the following sections. The aim
is to give a light presentation of the main ideas, without all the technicalities,
which are then reserved to the interested readers.

2. THE MAIN THEOREM

We consider the stochastic Navier–Stokes equations with additive
noise

du=(nDu − (u · N) u − NP) dt+dBt

div u=0,

in the domain [0, 2p]3, with periodic boundary conditions, where u is the
velocity field and P is the pressure field, and Bt is a Brownian motion. As
usual, the equations are projected on the space of divergence-free vector
fields, in order to cause the pressure to disappear from the equations. If we
write the equations in the Fourier components, we obtain the following
infinite system of stochastic differential equations

duk=5− n |k|2 uk −i C
h+l=k

(k · uh) 1u l −
k · u l

|k|2 k26 dt+qk dbk
t ,

for k ¥ Z3, with the constraint uk · k=0 (it comes from the divergence-free
condition). We have made some simplifying assumptions on the noise: we
assume that the noise takes values in the space of divergence-free vector
fields and that the covariance is diagonal in the Fourier components (the
assumptions will be stated more clearly in Section 3.1).

In order to state the problem of the finite dimensional approximation,
fix a threshold N and consider the finite subset of indices

KN={k ¥ Z3 | |k| [ N, k ] (0, 0, 0)}.
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The finite dimensional system obtained is the following

duk=5− n |k|2 uk −i C
h, l ¥ KN
h+l=k

(k · uh) 1u l −
k · u l

|k|2 k26 dt+qk dbk
t , (2.1)

with k ¥ KN (a formal derivation is given in Section 3). We will use the real
variables rk, sk ¥ R3, where uk=rk+isk, rather than the complex variables
uk, so that the equations are briefly written as

˛dr i
k=Fri

k
(r, s) dt+qr

k dbk
t ,

ds i
k=Fsi

k
(r, s) dt+q s

k dbk
t ,

k ¥ KN, i=1, 2, 3

and qk=qr
k+iq s

k. Since u−k=uk, the set of indices KN is redundant, hence
we take a smaller set K2 , which takes into account the symmetries.

The solution (r(t), s(t)) of the above stochastic equations is a Markov
process on the state space

U= Â
k ¥ K2

(Rk À Sk),

where Rk and Sk enclose the divergence-free condition rk · k=sk · k=0 (see
also (4.1) and the following formulas). We denote by Pt the transition
semigroup

Ptj(r0, s0)=E(r0, s0)[j(r(t), s(t))]

with generator

L=F0+1
2 C

k ¥ K2

i=1, 2, 3

(X r
k, i

2+X s
k, i

2) (2.2)

where

F0= C
k ¥ K2

C
3

i=1
Fri

k

“

“r i
k

+Fsi
k

“

“s i
k

, (2.3)

and

X r
k, i= C

3

j=1
q r

k, ij

“

“r j
k

, X s
k, i= C

3

j=1
q s

k, ij

“

“s j
k

, (2.4)

and by Pt((r, s), · ) the transition probability.
The main assumption we take on the noise is that it acts on a small set

of modes. We consider the set N of indices whose corresponding Fourier
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components are forced by the noise. We assume that N is a determining set
of indices, as defined in Section 5, which essentially means that each index
in KN can be obtained as the sum of elements of N. In other words N

should be an algebraic system of generators of Z3. In Section 5 we will give
some heuristic justifications to such claim. As a working example, Proposi-
tion 5.3 shows that any set N containing the three indices (1, 0, 0),
(0, 1, 0), and (0, 0, 1) is a determining set of indices.

Here we are interested in stating the main result of the paper, namely
the ergodicity of the finite dimensional approximation (2.1)

Theorem 2.1. Assume that the Brownian motion Bt satisfies the
assumptions in Section 3.1 and that the set N defined above is a determin-
ing set of indices. Then the system (2.1) admits a unique invariant measure.

Moreover, the unique invariant measure is supported on the whole
state space or, in other words, it gives positive mass to each open set.

Proof. First, we prove the existence of the invariant measure. The
method is classical and based on the Krylov–Bogoliubov method (see, for
example, Theorem 3.1.1 of Da Prato and Zabczyk (2)). The compactness
follows by the following argument. Let ||u||2=;k ¥ K2 |uk |2, then by Itô
formula (using also the first property of Lemma 7.1),

d ||u(t)||2= C
k ¥ K2

(2uk · Fk(u)+Tr(qT
k · qk)) dt+2 C

k ¥ K2
uk · qk dbk

t

= − 2n C
k ¥ K2

|k|2 |uk |2 dt+2 C
k ¥ K2

uk · qk dbk
t +s2 dt,

where s2 is the variance of the Brownian motion Bt, so that

E ||u(t)||2+2n F
t

0
||u(s)||2 ds [ E ||u(0)||+s2t

and by Gronwall lemma E ||u(t)|| [ E ||u(0)||+s
2

2n.
Uniqueness of the invariant measure is proved by means of the Doob

uniqueness theorem (see, for example, Theorem 4.2.1 of ref. 2). We just
need to show that the transition semigroup generated by the dynamics (2.1)
is strongly Feller and irreducible.

A Markov semigroup Pt is strongly Feller if Ptj is bounded continu-
ous in time and space when j is bounded measurable. By a theorem of
Stroock, (15) the transition semigroup is strongly Feller if the Hörmander
condition holds: the Lie algebra generated by the vector fields in (2.3)
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and (2.4), evaluated at each point, is the state space U. Since N is a
determining set of indices, from Lemma 4.2 it follows that the constant
vector fields of the generated Lie algebra span U.

A Markov semigroup is irreducible if it gives positive mass to any
open set for each initial condition and each time. It is well known (see
Stroock and Varadhan (16)) that irreducibility is true if the control problem
(see Eqs. (6.1)) associated to problem (2.1) is controllable. The last state-
ment follows from Theorem 6.5.

Finally, the irreducibility property implies also that the support of the
invariant measure is the whole state space. L

The next theorem shows, by means of general techniques developed in
Meyn and Tweedie, (12, 13) that the finite approximation of Navier–Stokes
equations has good dissipation properties, strong enough to ensure the
exponential mixing of the dynamics given by the Markov process. In order
to state the result, define, for any measurable function f \ 1 and any
signed measure m on the Borel sets of U,

||m||f=sup
|g| [ f

:F g(x) m(dx) : ,

and set

V(r, s)= C
k ¥ K2

C
i=1, 2, 3

(r i2

k +s i2

k ), (r, s) ¥ U.

Theorem 2.2. Under the assumptions of the previous theorem, let p

be the unique invariant measure. Then there are positive constants C and r

such that for each initial condition (r0, s0) ¥ U,

||Pt((r0, s0), · ) − p||f [ Ce−rt 11+V(r0, s0)+
s2

2n
2 , t > 0,

where f=1+V.

3. THE NAVIER-STOKES EQUATIONS IN THE FOURIER

COORDINATES

In this section we derive the equations of the finite dimensional
approximations of the stochastic Navier–Stokes equations, with additive
noise,

du=(nDu − (u · N) u − NP) dt+dBt

div u=0,
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in the domain [0, 2p]3, with periodic boundary conditions, in the Fourier
components.

Consider the Fourier basis (eik · x)k ¥ Z3 of L2([0, 2p]3). First, assume
that the applied random force has zero average, so that the centre of mass
of the fluid moves with constant velocity. Hence, without loss of generality,
we can assume that

u0=P0=0.

The projection onto the space of divergence-free vector fields is defined as

P(aeik · x)=1a −
k é k
|k|2 · a2 eik · x=1a −

a · k
|k|2 k2 eik · x,

where | · | is the Euclidean norm in R3. Notice that

div u=0 means k · uk=0 for each k.

3.1. Assumptions on the Noise

For the sake of simplicity, some simplifying assumptions will be done.
First we assume that the covariance Q of the noise is diagonal in the
Fourier basis, so that we can write

Qv= C
k ¥ Z3

(qk · vk) eik · x.

Moreover we assume that qT
k · k=0 for each k, this implies that the

Brownian motion takes values in the space of divergence-free vector fields.
The Brownian motion has finite variance that we denote by s2. We assume
also that for each k, the real and the imaginary parts of the 3 × 3 matrix qk,
if not zero, have rank 2. This is an assumption in the small of non-degen-
eracy, since we ask that, if a mode is forced, it is fully forced in its 4 com-
ponents. As a first consequence of our assumptions, the operators Q and P

commute.
The main assumption of the paper is that the noise acts only on a few

components, namely most of the matrices qk are zero. We define the set
N … Z3 of stochastically forced indices, that is the set of ks such that
qk – 0.
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3.2. The Equation in the Fourier Modes

We write

u(t, x)= C
k ¥ Z3

uk(t) eik · x

and, by means of the operator P, we project the equations in the space of
divergence-free vector fields, so that the pressure disappears. We obtain the
following infinite system of stochastic differential equations (see also
Gallavotti, (6) Chapter 2, where the author gives also a interpretation of the
physics of the fluid in terms of the Fourier coordinates)

duk=5− n |k|2 uk −i C
h, l ¥ Z3

h+l=k

(k · uh) 1u l −
k · u l

|k|2 k26 dt+qk dbk
t ,

uk · k=0

where (bk
t )t \ 0 are independent three-dimensional Brownian motions, and

the nonlinear term has been obtained in the following way:

P(u · N) u=iP C
k ¥ Z3

C
h+l=k

(l · uh) u le
ik · x

=i C
k ¥ Z3

C
h+l=k

(l · uh) 1u l −
k · u l

|k|2 k2 eik · x

=i C
k ¥ Z3

C
h+l=k

(k · uh) 1u l −
k · u l

|k|2 k2 eik · x.

3.3. The Finite Dimensional Approximation

Let N ¥ N and set

KN={k ¥ Z3 | k ] (0, 0, 0), |k|. [ N}.

where | · |. is the sup-norm in R3. We project the equation in the space
spanned by (eik · x)k ¥ KN

, with coefficients in R3, and to this end we set

u(t, x)= C
k ¥ KN

uke
ik · x.
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The equations in the finite dimensional approximation are

duk=5− n|k|2 uk −i C
h, l ¥ KN
h+l=k

(k · uh) 1u l −
k · u l

|k|2 k26 dt+qk dbk
t ,

with k ¥ KN. We set

uk=(r j
k+is j

k)j=1, 2, 3,

where k · rk=k · sk=0 and r j
k, s j

k, j=1, 2, 3, are real-valued. Since
u−k=uk, we are going to choose a smaller set of indices k ¥ KN in order to
take into account that some equations in the system are redundant. We set

K1
N={k ¥ Z3 | |k|. [ N, k3 > 0}

K2
N={k ¥ Z3 | |k|. [ N, k3=0, k2 > 0}

K3
N={k ¥ Z3 | |k|. [ N, k3=k2=0, k1 > 0}

and

K2=K1
N 2 K2

N 2 K3
N,

in such a way that

KN=K2 2 (−K2 ) and K2 5 (−K2 )=”.

Notice that #(K2 )=1
2 [(2N+1)3 − 1], we call such number D. Now, if

k ¥ K2 , the sum extended to all pairs of indices h, l such that h+l=k can
be written in the following way:

C
h+l=k
h, l ¥ KN

= C
h+l=k
h, l ¥ K2

+ C
h+l=k
h ¥ K2

l ¥ −K2

+ C
h+l=k
h ¥ −K2

l ¥ K2

,

since if h, l ¨ K2 , k does not belong to K2 as well. We denote by ;g the sum
extended to indices in K2 . With this position

C
h+l=k
h, l ¥ KN

(k · uh) 1u l −
k · u l

|k|2 k2

= Cg

h+l=k

(k · uh) 1u l −
k · u l

|k|2 k2+ Cg

h − l=k

(k · uh) 1u l −
k · u l

|k|2 k2

+ Cg

l − h=k
(k · uh) 1u l −

k · u l

|k|2 k2
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so that the equations become

duk+1n |k|2 uk+i Cg

h+l=k
(k · uh) 1u l −

k · u l

|k|2 k2

+i Cg

h − l=k
(k · uh) 1u l −

k · u l

|k|2 k2

+i Cg

l − h=k
(k · uh) 1u l −

k · u l

|k|2 k22 dt=qk dbk
t .

It is convenient to write explicitly the equations relative to the real and
imaginary part of uk. To this end, we set

Fri
k
=−n |k|2 r i

k+ Cg

h+l=k
(k · rh) 1 s i

l −
k · sl

|k|2 ki
2+(k · sh) 1 r i

l −
k · rl

|k|2 ki
2

− Cg

h − l=k
(k · rh) 1 s i

l −
k · sl

|k|2 ki
2− (k · sh) 1 r i

l −
k · rl

|k|2 ki
2

+ Cg

l − h=k
(k · rh) 1 s i

l −
k · sl

|k|2 ki
2− (k · sh) 1 r i

l −
k · rl

|k|2 ki
2 (3.1)

and

Fsi
k
=−n |k|2 s i

k − Cg

h+l=k
(k · rh) 1 r i

l −
k · rl

|k|2 ki
2− (k · sh) 1 s i

l −
k · sl

|k|2 ki
2

− Cg

h − l=k

(k · rh) 1 r i
l −

k · rl

|k|2 ki
2+(k · sh) 1 s i

l −
k · sl

|k|2 ki
2

− Cg

l − h=k
(k · rh) 1 r i

l −
k · rl

|k|2 ki
2+(k · sh) 1 s i

l −
k · sl

|k|2 ki
2 , (3.2)

so that the equations for the real and the imaginary part become

drk − Frk
(r, s) dt=qr

k dbk
t

and

dsk − Fsk
(r, s) dt=qs

k dbk
t .
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4. THE LIE ALGEBRA GENERATED BY THE DYNAMICS

The state space of the Markov process (r(t), s(t)) which is solution of
the equations stated above is a linear space U … R6D, where D=#K2 , given
by

U= Â
k ¥ K2

(Rk À Sk), (4.1)

and each element of U is labelled (r, s), with r=(r1
k, r2

k, r3
k)k ¥ K2 and

s=(s1
k, s2

k, s3
k)k ¥ K2 , and

Rk={(r, s) ¥ R6D | rk · k=0, sk=0, rh=sh=0, h ] k}

Sk={(r, s) ¥ R6D | sk · k=0, rk=0, rh=sh=0, h ] k}.

In the same way, we can define the Lie algebra U corresponding to the
vector space U,

U=3G | G= C
k ¥ K2

i=1, 2, 3

Gri
k

“

“r i
k

+Gsi
k

“

“s i
k

and k · Grk
=k · Gsk

=04 . (4.2)

We define also the subspaces Uk=Rk À Sk of U of constant vector fields,
where

Rk=3 C
i=1, 2, 3

r i
k

“

“r i
k

: rk ¥ Rk
4 and Sk=3 C

i=1, 2, 3
s i

k

“

“s i
k

: sk ¥ Sk
4

In this section, we want to find some reasonable conditions on the set
N of forced modes (such a set has been defined in Section 3.1) in such a
way that the algebra generated by the fields

{F0} 2 Uk k ¥ N, (4.3)

where

F0= C
k ¥ K2

i=1, 2, 3

Fri
k

“

“r i
k

+Fsi
k

“

“s i
k

,
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and Fri
k

and Fsi
k

have been defined respectively in (3.1) and (3.2), contains
all the constant vector fields of U. In particular, it follows that the
Hörmander condition holds, that is the generated Lie algebra, evaluated at
each point of U, gives U itself. We start with some computations that will
be useful in the sequel.

Lemma 4.1. Let m, n ¥ K2 and V ¥ Um, W ¥ Un, with

V= C
3

j=1
v r

j

“

“r j
m

+v s
j

“

“s j
m

, W= C
3

j=1
w r

j

“

“r j
m

+w s
j

“

“s j
m

,

then
(i) if k=m+n, h=n − m and g=m − n, the vector field [[F0, V], W]

is equal to

[(vr · k) Pk(w s)+(w s · k) Pk(v r)+(v s · k) Pk(w r)+(wr · k) Pk(v s)]
“

“rk

+[(v s · k) Pk(w s)+(w s · k) Pk(v s) − (v r · k) Pk(w r) − (wr · k) Pk(v r)]
“

“sk

+[(vr · h) Ph(w s)+(ws · h) Ph(v r) − (v s · h) Ph(w r) − (wr · h) Ph(v s)]
“

“rh

− [(vr · h) Ph(w r)+(wr · h) Ph(v r)+(v s · h) Ph(w s)+(w s · h) Ph(v s)]
“

“sh

+[(v s · g) Pg(w r)+(wr · g) Pg(v s) − (v r · g) Pg(w s) − (w s · g) Pg(v r)]
“

“rg

− [(vr · g) Pg(w r)+(wr · g) Pg(v r)+(v s · g) Pg(w s)+(w s · g) Pg(v s)]
“

“sg
,

where Pk is the projection of R3 on the plane orthogonal to the vector k,
and in the above formula the terms corresponding to indices out of K2 are
zero;

(ii) if there is q ¥ Q such that n=q m, then [[F0, V], W]=0,

(iii) [[F0, V], W]=1
2 [[F0, V+W], V+W].
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Proof. We compute the derivatives of the components of F0 (defined
in (3.1) and (3.2)),

“Fri
k

“r j
m

=−n |k|2 dijdkm+kj(s i
k − m − s i

m − k+s i
m+k)

+k · (sk − m − sm − k+sm+k) aij(k)

“Fri
k

“s j
m

=kj(r i
k − m+r i

m − k − r i
m+k)+k · (rk − m+rm − k − rm+k) aij(k)

“Fsi
k

“r j
m

=−kj(r i
k − m+r i

m − k+r i
m+k) − k · (rk − m+rm − k+rm+k) aij(k)

“Fsi
k

“s j
m

=−n |k|2 dijdkm+kj(s i
k − m − s i

m − k − s i
m+k)

+k · (sk − m − sm − k − sm+k) aij(k)

where we have set, for brevity, aij(k)=dij − 2kikj

|k|2 , and the second derivatives

“
2Fri

k

“r l
n “r j

m

=
“

2Fri
k

“s l
n “s j

m

=0,
“

2Fri
k

“s l
n “r j

m

=(dn, k − m − dn, m − k+dn, m+k) A i
ij(k)

and

“
2Fsi

k

“r l
n “r j

m

= − (dn, k − m+dn, m − k+dn, m+k) A i
jl(k),

“
2Fsi

k

“s l
n “r j

m

=0

“
2Fsi

k

“s l
n “s j

m

=(dn, k − m − dn, m − k − dn, m+k) A i
jl(k)

(we have set A i
jl(k)=dilkj+dijkl − 2 kikjkl

|k|2 ), with the agreement that every-
thing concerning indices out of the set K2 is zero. Take now V ¥ Um and
W ¥ Un as in the statement of the lemma, then by computing the bracket
we obtain

[[F0, V], W]= C
k ¥ K2

C
3

i, j, l=1

1v s
jw

r
l

“
2Fri

k

“s j
m “r l

n

+v r
j w

s
l

“
2Fri

k

“r j
m “s l

n

2 “

“r i
k

+1v r
j w

r
l

“
2Fsi

k

“r j
m “r l

n

+v s
jw

s
l

“
2Fsi

k

“s j
m “s l

n

2 “

“s i
k

.
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We analyse the coefficients of the “ri
k
-components:

v s
jw

r
l

“
2Fri

k

“s j
m “r l

n

+v r
j w

s
l

“
2Fri

k

“r j
m “s l

n

= C
3

j, l=1
(dm, k − n − dm, n − k+dm, n+k) A i

jl(k) v s
jw

r
l

+(dn, k − m − dn, m − k+dn, m+k) A i
jl(k) v r

j w
s
l

=(dm, k − n − dm, n − k+dm, n+k)[(v s · k) Pk(w r)i+(wr · k) Pk(v s)i]

+(dn, k − m − dn, m − k+dn, m+k)[(vr · k) Pk(w s)i+(w s · k) Pk(v r)i],

where Pk(v)i=vi − ki

|k|2 (v · k). In a similar way it is possible to treat the
coefficients of the “si

k
-components, and claim (i) is true.

If n=q m, it follows that

v r · k=v s · k=wr · k=w s · k=0

with k=m+n, m − n and n − m, so that using property (i) of this lemma,
claim (ii) holds true. Finally, if V ¥ Um and W ¥ Un,

[[F0, V+W], V+W]

=[[F0, V], V]+[[F0, V], W]+[[F0, W], V]+[[F0, W], W]

which, by the Jacobi identity and by property (ii), is equal to 2[[F0, V], W].
L

The computations of the above lemma show that the non-linear term
mixes and combines the components. In some sense, this mechanism can be
considered as a geometrical counterpart of the cascade of energy. Our aim
is to understand for which sets N of forced modes the evaluation of the
Lie algebra generated by the fields (4.3), gives U. We define the set
A(N) … KN of indices k ¥ KN such that the constant vector fields corre-
sponding to k (or to − k, depending on k ¥ K2 or − k ¥ K2 ) are in the Lie
algebra generated by the vector fields (4.3). Obviously, N … A(N), and
our aim is to show that A(N)=KN.

Lemma 4.2. Let N be a subset of indices and define the set A(N)
as above.

(i) If m ¥ A(N), then also − m ¥ A(N),
(ii) if m, n are in A(N), m+n is in KN, m and n are linearly inde-

pendent and |m| ] |n|, then m+n ¥ A(N).
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Proof. The first property follows from the fact that u−m=um. In
order to show the second claim, take m and n in A(N) 5 K2 and assume
that k=m+n ¥ K2 . The claim follows if m+n ¥ A(N).

Let

V r= C
3

i=1
vi

“

“r i
m

, V s= C
3

i=1
vi

“

“s i
m

,

Wr= C
3

i=1
wi

“

“r i
n

, W s= C
3

i=1
wi

“

“s i
n

,

with v · m=w · n=0. Then, by property (i) of the previous lemma,

[[F0, V r], W s]+[[F0, V s], W r]=2((v · k) Pk(w)+(w · k) Pk(v)) ·
“

“rk
,

[[F0, V r], W r] − [[F0, V s], W s]=2((v · k) Pk(w)+(w · k) Pk(v)) ·
“

“sk
.

Now, let M, E two vectors in R3 such that {k, M, E} is a basis of R3, M
and E span {x ¥ R3 | x · k=0} and m, n are in Span[k, M]. Choose

v=l1k+m1M+n1E, w=l2k+m2M+n2E,

then, by the assumptions on m and n, it is always possible to choose the
coefficients l1, m1, n1, l2, m2, n2 in such a way that (v · k) Pk(w)+
(w · k) Pk(v) is any vector in Span[M, E]. In other words, Uk is contained
in the Lie algebra generated by the vector fields (4.3). In the same way,
if h=n − m ¥ K2 (or if g=m − n ¥ K2 ), the conclusion follows by taking
[[F0, V r], W s] − [[F0, V s], W r] and [[F0, V r], W r]+[[F0, V s], W s]. L

5. DETERMINING SETS OF INDICES

In view of Lemma 4.2, we call a subset N of KN a determining set of
indices for the ultraviolet cut-off N, if N generates the cube KN in the
sense that A(N)=KN, where A(N) has been defined in the previous
section. Lemma 4.2 shows us which is the algebraic structure of such set.
Namely, A(N) is symmetric with respect to the origin and it is close with
respect to the sum, under some restrictions (m and n have to be linearly
independent, with |m| ] |n| and m+n ¥ KN). If one neglects such restric-
tions, Lemma 4.2 tells us that a set N is a determining set of indices for the
cut-off N if it is an algebraic system of generators for the group (Z3, +),
that is, the smallest subgroup of Z3 which contains N is the whole Z3.
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Since by Lemma 4.2 it is obviously true that a determining set of
indices, with respect to any cut-off, is a system of generators, one can ask if
the vice-versa is true, that is if each system of generators is a determining
set of indices for a suitable cut-off. We give this statement in the form of a
claim, since in our opinion any proof seems to be full of technicalities
which are not of great interest in this context.

Claim 5.1. If N is an algebraic system of generators for the group
(Z3, +) and N … KN, then N is a determining set of indices for the ultra-
violet cut-off N.

For the sake of completeness, we give (see Jacobson, (8) Theorems 3.8
and 3.9) a necessary and sufficient condition for a set of indices N to be a
system of generators of the whole group Z3.

Theorem 5.2. A set N … Z3 is a system of generators of Z3 if and
only if the g.c.d. of the minors of order 3 of the matrix A is equal to 1,
where A is the k × 3 matrix whose rows are the coordinates of the points of
N and k=#N.

The intuitive idea which lets us believe that the claim is true is that the
restrictions given in the statement of property (ii) of Lemma 4.2 can be
avoided in the following way.

The restriction about linear independence can be easily avoided by
moving aside: for example if one wants to sum m with itself, the best way is
to obtain 2m as m+n+m − n, where n is linear independent with m.

The restriction about the Euclidean norm (that is, |m| ] |n|) can be
avoided, where possible, as in the previous case. Sometimes, as in the case
of the proposition below, this is not possible, since it may happen that all
indices we are allowed to use, have the same Euclidean norm. In such a
case the solution is to reach the index by different paths, providing with
each path a component of the Lie algebra we are dealing with, in analogy
with Lemma 4.1. This method is probably peculiar of the dimension three
and it does not hold in lower dimensions (see E and Mattingly (3)).

Indeed these tricks are used in the proof of the following proposition,
which states that the working example we talked about in Section 2 is a
determining set of indices.

Proposition 5.2. Any set N … Z3 containing the three indices
(1, 0, 0), (0, 1, 0), and (0, 0, 1) is a determining set of indices.
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Proof. A careful analysis of the last part of the proof of Lemma 4.2
shows that, if |m|=|n|, then the Lie brackets [[F0, V], W], with V ¥ Um

and W ¥ Un, span the two-dimensional subspace of Um+n given by

lE ·
“

“rm+n
+mE ·

“

“sm+n
,

where E is the index orthogonal (in R3) to m and n. Hence, if we sum
(1, 0, 0) and (0, 1, 0), we obtain the corresponding two dimensional sub-
space of U(1, 1, 0). Again a direct computation shows that such a smaller
subspace is indeed sufficient, since if we combine it with U(0, 0, 1) we obtain
the full U(1, 1, 1). Now we just subtract (0, 0, 1) from (1, 1, 1) to obtain the
full U(1, 1, 0) and, in the same way, we can obtain all the indices of norm 2.
With this set of indices is now easy to obtain, by means of Lemma 4.2 and
of the tricks explained above, all the indices in KN, whatever is N. L

An obvious consequence of the above proposition is that if N is a
determining set of indices for a cut-off N, then it is a determining set of
indices for any other cut-off threshold larger than N.

6. THE CONTROL PROBLEM

The section is devoted to the proof of the controllability properties of
the finite dimensional approximations of Navier–Stokes equations. The first
part contains some generalities on polynomial control systems. The approach
and the results are taken from Jurdjevic and Kupka. (10) In the second part
we adapt the proof of a theorem (again of Jurdjevic and Kupka (10)) to our
case. The original theorem applies to polynomials of odd degree. Polyno-
mials of even degree behave in a different way, mostly because of the obs-
tructions of the positive terms. Our case has no obstructions, essentially
because of property (ii) of Lemma 4.1, and the system is controllable.

6.1. Generalities on Polynomial Control Systems

We consider a system of the form

ẋ=P(x)+ C
m

i=1
u i(t)

where x ¥ Rn, b1, b2,..., bn are fixed vectors in Rn and P is a polynomial
mapping, that is P=(P1,..., Pn) and each Pi is a polynomial in the
variables (x1,..., xn). Let Y1,..., Yn be the constant vector fields assuming
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respectively value b1,..., bn and let F be the vector fields having the com-
ponents of P as its components, and define

F=3F+ C
i=1m

u iYi | (u1,..., um) ¥ Rm4

We define, for each x0 ¥ Rn and t > 0, the set AF(x0, t) of states reachable,
with a suitable control u=(u1,..., un), from the initial state x0 in a time
smaller than t. We define the set Ag

F(x0, t) of states reachable exactly at
time t.

Two families of vector fields F1, F2 are said to be equivalent if for all
x ¥ Rn and t > 0,

AF1
(x, t)=AF2

(x, t).

If F is equivalent to F1 and to F2, then it is equivalent to F1 2 F2. It
makes sense then to define the saturate of F, denoted by Sat(F), which is
the union of all families of vector fields equivalent to F. Moreover we will
call Lie(F) the Lie algebra generated by F. Finally, the Lie saturate of F
is defined as LS(F)=Sat(F) 5 Lie(F). In order to obtain controllability,
the Lie saturate should be as large as possible, as stated by the following
theorem.

Theorem 6.1. Let F be any family of smooth vector fields and
assume that LS(F) contains n vectors V1,..., Vn such that the vector space
spanned by them is in LS(F) and for each x ¥ Rn the vectors
V1(x),..., Vn(x) span Rn. Then AF(x, t)=Rn for each x ¥ Rn and t > 0.

We adapt the conclusions of the theorem to the system that will be
studied in the following section.

Corollary 6.2. Let F be any family of smooth vector fields and
assume that the constant vector fields of LS(F) span Rn. Then
Ag

F(x, t)=Rn for each x ¥ Rn and t > 0.

Proof. From the previous theorem, AF(x, t)=Rn. Moreover, by
Theorem 13, Chapter 3 of Jurdjevic (9) (see also the remarks after Theorem 11,
Chapter 5 of ref. 9) it follows that also Ag

F(x, t)=Rn. L

In the following, we will need the following two lemmata. The first
lemma permits the enlargement of a family of vector fields by means of

172 Romito



diffeomorphisms. A diffeomorphism f: Rn
Q Rn is a normaliser of a family

F if for all x ¥ Rn and t > 0,

f(AF(f−1(x), t)) … AF(x, t),

we will denote by Norm(F) the set of all smooth normaliser of F.

Lemma 6.3. ThefamilyF isequivalentto1f ¥ Norm(F){fg(V) | V ¥ F},
where fg is the differential of f.

The second lemma gives the geometrical structure of the Lie saturate
of a family of vector fields.

Lemma 6.4. If F is any family of smooth vector fields, then F is
equivalent to the closed convex cone generated by {lV | 0 [ l [ 1, V ¥ F},
where the closure is in the C. topology on compact sets of Rn.

6.2. Control of the Finite Dimensional Approximations of

Navier–Stokes

We are able now to prove the controllability property of our equa-
tions. We aim to prove that the control problem

˛ ṙk − Frk
(r, s)=qr

kv r
k

ṡk − Fsk
(r, s)=qs

kv s
k,

(6.1)

where Frk
and Fsk

are defined in (3.1) and (3.2), and the 3 × 3 matrices are
defined in (3.1), is controllable, in the sense that for each initial state
(rI, sI) ¥ U, for each final state (rF, sF) ¥ U and for each time T > 0 there is
a family of controls (v r

k, v s
k)k ¥ N, where N is the set of indices correspond-

ing to the non-zero qk, such that the solution corresponding to that control
starts at t=0 in (rI, sI) and arrives in (rF, sF) at time t=T.

Theorem 6.5. Assume that the set N of non-zero components of
the control is a determining set of indices, as defined in Section 5. Then
system (6.1) is controllable in the sense given above.

Proof. First we show that Uk … LS(F) for k ¥ N. Let l ¥ R and
k ¥ N and take Yk ¥ Uk, since

lYk= lim
n Q .

1
n

(F0+nlYk),

it follows by Lemma 6.4 that Yk ¥ LS(F).
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Now we aim to show the following claim: if m, n ¥ KN are linear inde-
pendent indices with |m| ] |n| and m+n ¥ KN, and if Um À Un … LS(F), then
also Um+n … LS(F). If the claim is true, it follows that each Uk is contained
in LS(F) and, since by the assumptions N is a determining set of indices,
Corollary 6.2 applies and the proof is ended.

The proof of the claim now follows. From Lemma 4.2 we know that
Um+n is spanned by [[F0, V], W], where V ¥ Um and W ¥ Un. From prop-
erty (iii) of Lemma 4.1, we have that

[[F0, V], W]=1
2 [[F0, V+W], V+W]

and

− [[F0, V], W]=1
2 [[F0, V − W], V − W].

Since by Lemma 6.4 LS(F) is convex, in order to prove the claim it is
sufficient to show that l[[F0, V], V] is in LS(F) for each l > 0 and
V ¥ Um À Un.

So, let a ¥ R and V ¥ Um À Un, then f(x)=eaV(x) is in Norm(F) (see
the proof of Theorem 2 of Jurdjevic and Kupka (10)), so that, by Lemma 6.3,
(eaV)g (F0) ¥ LS(F). Now, since the coefficients of F0 are polynomials of
degree 2 and V is a constant vector field, it follows that

(eaV)g (F0)=I+a[V, F0]+
a2

2
[V, [V, F0]],

and so, for each l > 0,

l[V, [V, F0]]= lim
a Q .

l

a2 (eaV)g (F0) ¥ LS(F),

since LS(F) is closed. The theorem is proved. L

7. THE EXPONENTIAL CONVERGENCE

In this last section we prove Theorem 2.2 as a consequence of a
general result by Meyn and Tweedie (13) (see Theorem 6.1). Before giving the
statement of such theorem, we need to state some definitions. They will be
given in a simplified form, adapted to our case, while the general state-
ments can be found in the papers by Meyn and Tweedie. (12, 13)
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A nonempty subset C of the state space U is a petite set for a Markov
process with transition probabilities Pt( · , · ) if there are a non-trivial
measure j and a probability distribution a on (0, .) such that

F Pt(x, · ) a(dt) \ j for all x ¥ C.

A function V: U Q R+ is a Lyapunov function for the process if
V(x) Q . as |x| Q . and there are real constants c > 0 and d such that

LV(x) [ − cV(x)+d

where L is the generator of the diffusion.
The kinetic energy

V(r, s)= C
k ¥ K2

C
3

i=1
(r i2

k +s i2

k )

will play the role of the Lyapunov function in our case, as stated by the
following lemma.

Lemma 7.1. For each (r, s) ¥ U,

C
k ¥ K2

C
3

i=1
(r i

kEri
k
+s i

kEsi
k
)=0,

where the polynomial Eri
k

and Esi
k

are respectively the homogeneous part of
degree 2 of the polynomials Fri

k
and Fsi

k
, defined in (3.1) and (3.2), and

LV(r, s) [ − 2nV(r, s)+s2,

where L is the generator defined in (2.2) and s2 is the variance of the
Brownian motion Bt.

Proof. The first property is an easy consequence of a property of the
non-linear term of Navier–Stokes equations, namely >v · (v · N) v=0. Indeed

C
k ¥ K2

(rk · Erk
+sk · Esk

)= C
k ¥ K2

C
h, l ¥ KN
h+l=k

Im[(k · uh)(u l · uk)]= C
k ¥ KN

uk · Euk
(7.1)

where uk=rk+isk and Euk
is the non-linear part in Eq. (2.1), namely

Euk
= C

h, l ¥ KN
h+l=k

(k · uh) 1u l −
k · u l

|k|2 k2 .
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Finally, the proof that the last sum in (7.1) is equal to 0 is just a matter of
swapping the two indices k and l.

The second property is then an easy consequence of the previous one:

LV= C
k ¥ K2

( − 2n |k|2 (r2
k+s2

k)+rk · Erk
+sk · Esk

)+s2 [ − 2nV+s2. L

Now we are able to prove Theorem 2.2.

Proof of Theorem 2.2. From Theorem 2.1 we know that the Markov
process (r(t), s(t)) is strong Feller and irreducible. Using Theorems 3.3
and 4.1 of Meyn and Tweedie, (12) it follows that all compact sets of the
state space U are petite sets. Moreover the previous lemma tells us that the
kinetic energy V is a Lyapunov function. By means of Theorem 6.1 of
Meyn and Tweedie, (13) we conclude that there are positive constants C and
r such that for each (r0, s0) ¥ U,

||Pt((r0, s0), · ) − p||f [ C 11+V(r0, s0)+
s2

2n
2 e−rt

with f=1+V. L
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